

## ADVANCES IN RESPIRATORY VIRUS DIAGNOSTICS: MOLECULAR AND POC TESTING

Jesse Papenburg MD MSc FRCPC Montreal Children's Hospital, McGill University Montreal, Canada MAC ID Conference August 10, 2019 jesse.papenburg@mcgill.ca

# Outline

## 1. Viral respiratory infections

- 1. Rationale / importance of diagnostic testing
- 2. Test methods
- 3. Accuracy of rapid tests for RSV and influenza
- 4. Impact of diagnostic testing on antimicrobial prescribing

# Acute Respiratory Infection (ARI)

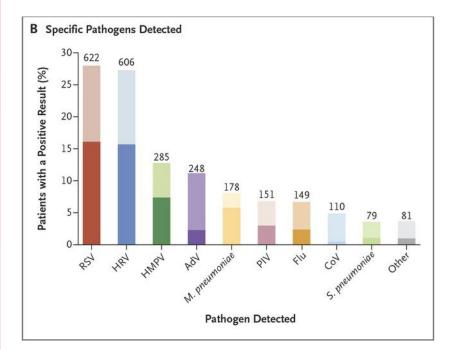
- Most common acute illness regardless of age or gender<sup>1</sup>
- Severe disease leading to hospitalization:
  - Bronchiolitis (infants)
  - Pneumonia
  - Exacerbations of underlying chronic disease in high-risk adults and elderly
    - COPD
    - Asthma
    - Cardiac
- Second leading cause of death in children <5 years old across all regions of the world<sup>2</sup>
- Most ARI are caused by viruses, especially in children<sup>1</sup>

<sup>1</sup>Monto AS. Epidemiology of viral respiratory infections. *Am J Med* 2002. <sup>2</sup>Mathers CD, *et al.* The burden of disease and mortality by condition: data, methods, and results for 2001.

Oxford University Press 2006.

# Most ARI are caused by viruses – especially in children

Prospective study of children < 3 years old with ARI, Quebec City, 2006-10


|           | Total      | Hospitalised | Clinic     |
|-----------|------------|--------------|------------|
|           | N=1039     | N=734        | N=305      |
|           | n (%)      | n (%)        | n (%)      |
| ≥ 1 virus | 908 (87.4) | 632 (86.1)   | 276 (90.1) |
| 1 virus   | 752 (72.4) | 546 (74.4)   | 206 (67.5) |
| 2 viruses | 144 (13.9) | 85 (11.6)    | 59 (19.3)  |
| 3 viruses | 11 (1.1)   | 1 (0.1)      | 10 (3.3)   |
| 4 viruses | 1 (0.1)    | 0            | 1 (0.3)    |

Papenburg et al. Comparison of risk factors for human metapneumovirus and RSV disease severity in young children. J Infect Dis 2012.

# RSV disease burden in children

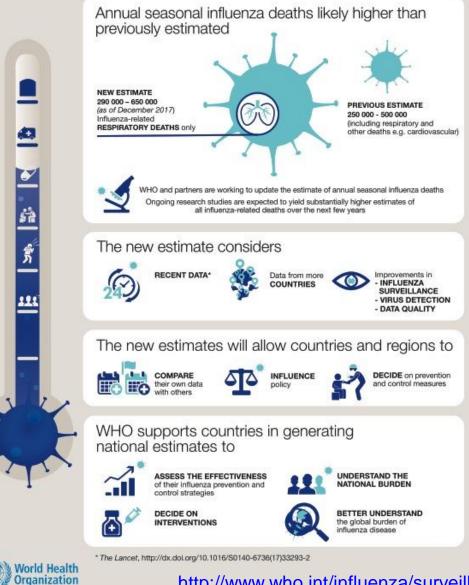
- Most common cause of lower respiratory tract infections among young children worldwide<sup>1, 2</sup>
  - "Estimated that globally in 2015, 33.1 million episodes of RSV-ALRI, resulted in about 3.2 million hospital admissions, and 59 600 in-hospital deaths in children younger than 5 years."<sup>3</sup>





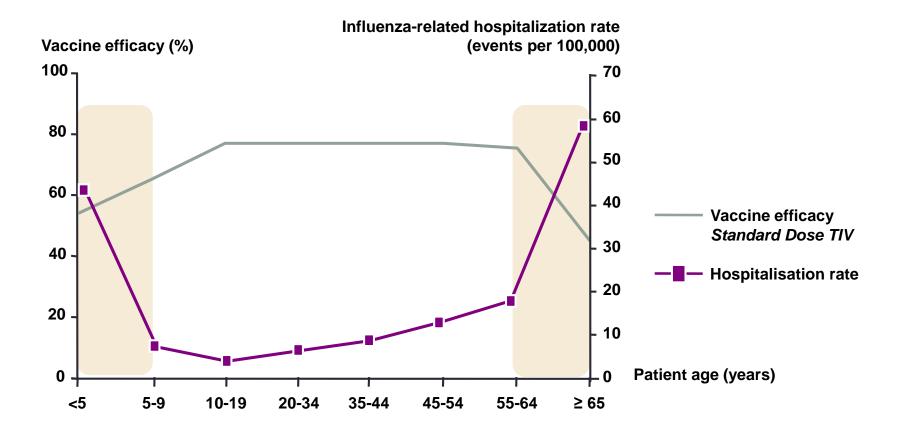
Jain et al., N Engl J Med 2015

Hall et al. N Engl J Med 2009
 Nair et al. Lancet 2010
 Shi et al. Lancet 2017


## Underrecognized burden of RSV in adults

- Among adults, RSV infection accounts for approximately:
  - 11% of hospitalizations for pneumonia<sup>1</sup>
  - 11% of hospitalizations for COPD<sup>1</sup>
  - 7% of hospitalizations for asthma<sup>1</sup>
  - 5% of hospitalizations for congestive heart failure<sup>1</sup>
  - 18% of office visits by elderly for respiratory illnesses during winter<sup>2</sup>
- Even during peak influenza periods, RSV causes
  - 6% of ARI hospitalizations among elderly >75 years old in Québec<sup>3</sup>
- This leads to, yearly, in U.S. population > 65 years old:
  - >177,000 hospitalizations<sup>1,3</sup>
    - Hospitalization costs alone would exceed \$1 billion<sup>1,4</sup>
  - >10,000 14,000 deaths<sup>1,3</sup>

1. Falsey et al. N Engl J Med 2005; 2. Thompson et al. JAMA 2003;


3. Gilca et al Open Forum Infect Dis 2014; 4. Zambon et al. Lancet 2001; 5. Han et al. J Infect Dis. 1999

#### Estimate of Respiratory Deaths due to Seasonal Influenza 290 000 – 650 000 annually



http://www.who.int/influenza/surveillance\_monitoring/bod/en/

# Extremes of Age: Influenza Vaccine Efficacy Lowest, Related Complications Highest



<sup>1</sup> Nichol K, et al. Vaccine 2003; 21:1769-1775

- <sup>2</sup> Goodwin K, et al. Vaccine 2006; 24:1159-1169
- <sup>3</sup> Grubeck-Loebenstein B, et al. Nat Med 1998; 4:870

<sup>4</sup> Glezen WP, et al. Am Rev Respir Dis 1987; 136:550-555

# High-risk Groups

#### People at high risk of influenza-related complications or hospitalization

| • | Adults aged >60 years; residents of<br>nursing homes or long-term care<br>facilities | • | Renal disease; liver disease                                     |
|---|--------------------------------------------------------------------------------------|---|------------------------------------------------------------------|
| • | All children aged <5 years, especially 6 to 23 months                                | • | Children receiving chronic ASA                                   |
| • | Chronic cardiac disorders                                                            | • | Endocrine/metabolic disorders (diabetes)                         |
| • | Chronic pulmonary disorders and asthma                                               | • | Anemia, hemoglobinopathy                                         |
| • | Cancer/immune-compromising conditions, including HIV/AIDS patients                   | • | Conditions compromising the evacuation of respiratory secretions |
| • | Extreme obesity                                                                      | • | Healthy pregnant women (T2/T3)                                   |
| • | People in isolated/distant communities;                                              | • | High-risk pregnant women at any stage                            |

ASA = aspirin; T2/T3 = trimester 2/3

Government of Canada. <u>https://www.canada.ca/en/public-health/services/diseases/flu-influenza/health-professionals-flu-influenza.html</u>

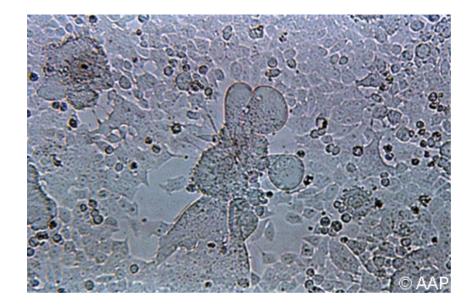
# Clinical characteristics cannot distinguish RSV and influenza from other respiratory pathogens

- Clinical influenza-like illness case definitions lack sensitivity and specificity
- Pneumonia on chest xray in 20-50% of hospitalized patients
   Viral? Bacterial? Both?

### Laboratory diagnosis required for confirmation of etiology

**Table 1** Clinical manifestations of respiratory syncytial virus infec-tion compared with symptomatic influenza A disease [20, 21, 27, 36]

| Symptoms    | RSV (%) | Influenza (%) |
|-------------|---------|---------------|
| Cough       | 85–95   | 89            |
| Dyspnea     | 51-93   | 32            |
| Wheezing    | 33–90   | 30            |
| Rhinorrhea  | 22-78   | 64            |
| Sore throat | 16-64   | 64            |
| Myalgias    | 10-64   | 70            |
| Fever       | 48–56   | 72            |

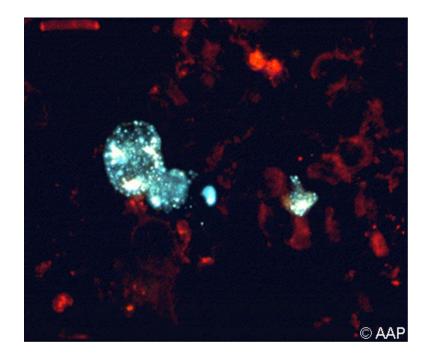

RSV respiratory syncytial virus

Branche AR, Falsey AR. Drugs Aging. 2015;32(4):261-9.

# TRADITIONAL RESPIRATORY VIRUS DIAGNOSTICS

# Cell culture

- Lacks sensitivity
  - ~50-70%
- Slow
  - 24-48h to several days
- Labour-intensive
- Laboratory expertise
- Useful for phenotypic testing
  - Antigenic characterization
  - Antiviral resistance

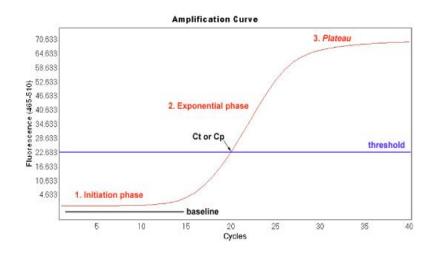



Characteristic cytopathic effect of RSV in tissue culture: formation of large multinucleated syncytial cells.

Copyright © 2018 American Academy of Pediatrics. All rights reserved.

# Immunofluorescent staining

- Multiplex panels available for
  - RSV
  - Influenza A & B
  - hMPV
  - PIV 1-4
  - Adenovirus
- Sensitivity of 50-90%
- Tech. time 1-2h
- Technical expertise




RSV antigen in nasopharyngeal secretions: green immunofluorescence

Copyright © 2018 American Academy of Pediatrics. All rights reserved.

# Laboratory-based molecular assays: RT-PCR

- Gold standard methods
  - Low limits of detection: → high clinical sensitivity
- Commercial or lab-developed
  - Not all perform equally well
- Can be highly multiplexed:
  - 12-18 targets
  - Bacterial targets
- Most assays complex, require batching
  - Result turnaround time >>> analytical time
- Greater automation
  - Higher thotughput



Huggett J and O'Grady J. 2014.

### MUHC 24/7 lab serves ~1.8 million people



#### ~10,000 respiratory virus tests per year:

- Lab-developed (in 2008-09) real-time PCR assay
- Mean TAT 8-12 hours (for Glen site)
- 12 targets:
  - RSV, Influenza A/B, Parainfluenza 1/2/3, Adenovirus, Coronavirus 229E/OC43, Human Metapneumovirus, Enterovirus, and Rhinovirus



# Laboratory: High volume / highly multiplexed

#### Analytes

| Panel 1                                                                                                                                                                                                                                   | CE-IVD Marked | Panel 2                                                                                                                                                                                                                                                    | CE-IVD Marked |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <ul> <li>Influenza A virus (Flu A)</li> <li>Influenza B virus (Flu B)</li> <li>Respiratory syncytial virus A (RSV A)</li> <li>Respiratory syncytial virus B (RSV B)</li> <li>Flu A-H1</li> <li>Flu A-H1pdm09</li> <li>Flu A-H3</li> </ul> |               | <ul> <li>Adenovirus (AdV)</li> <li>Enterovirus (HEV)</li> <li>Parainfluenza virus 1 (PIV 1)</li> <li>Parainfluenza virus 2 (PIV 2)</li> <li>Parainfluenza virus 3 (PIV 3)</li> <li>Parainfluenza virus 4 (PIV 4)</li> <li>Metapneumovirus (MPV)</li> </ul> |               |
| Panel 3                                                                                                                                                                                                                                   | CE-IVD Marked | Panel 4                                                                                                                                                                                                                                                    | CE-IVD Marked |
| - Bocavirus (HBoV)<br>- Rhinovirus (HRV)<br>- Coronavirus NL63 (CoV NL63)<br>- Coronavirus 229E (CoV 229E)<br>- Coronavirus OC43 (CoV OC43)                                                                                               |               | <ul> <li>Mycoplasma pneumoniae (MP)</li> <li>Chlamydophila pneumoniae (CP)</li> <li>Legionella pneumophila (LP)</li> <li>Haemophilus influenzae (HI)</li> <li>Streptococcus pneumoniae (SP)</li> </ul>                                                     |               |

#### http://seegene.com/neo/en/products/respiratory/allplex\_Rp\_fp.php

# Laboratory-based: One-step, sample-to-answer cartridges





https://www.biofiredx.com/

http://www.cepheid.com/



#### https://www.luminexcorp.com/aries-flu-ab-rsv-assay/

# RAPID RESPIRATORY VIRUS DIAGNOSTICS

### The Importance of Rapid Diagnosis

# Tick Tock

### Rapid and accurate diagnosis can result in:

#### Less unnecessary antibiotic use

(Esposito, et al. Arch Dis Child 2003; Blaschke, et al. J Pediatr Infect Dis Soc 2014.)

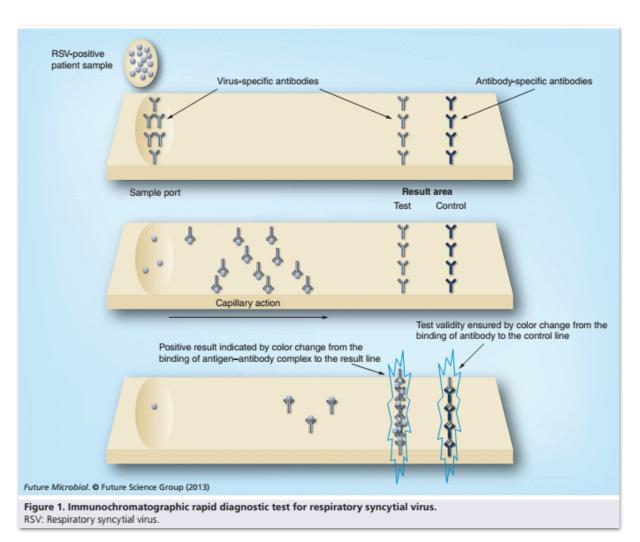
#### Prompt initiation of antiviral therapy

(Noyola, et al. Pediatr Infect Dis 2000; D'Heilly, et al. J Clin Virol 2008)

#### Prompt institution of infection control measures, e.g., cohorting to reduce nosocomial transmission

(Madge, et al. Lancet 1990; Mills, et al. J Hosp Infect 2011; Caram, et al. J Am Geriatr Soc 2009)

#### Fewer hospitalizations or shorter length of stay


(Bonner, et al. Pediatrics 2003; Nesher, et al. Infect Contr Hosp Epid 2019)

#### Fewer ancillary diagnostic tests

(Bonner, et al. Pediatrics 2003; Iyer, et al. Acad Emerg Med 2006)

## RSV rapid antigen detection tests (RADT)

- Used by many clinical laboratories in US CDC RSV surveillance program<sup>1</sup>
- Advantages related to speed and ease
  - Use at point-ofcare (CLIA waived)
- Major downside: poor sensitivity:
  - 10-85%



### Host and Viral Factors Affecting Clinical Performance of a Rapid Diagnostic Test for Respiratory Syncytial Virus in Hospitalized Children

Jesse Papenburg, MD<sup>1,2</sup>, David L. Buckeridge, MD, PhD<sup>1</sup>, Gaston De Serres, MD, PhD<sup>3</sup>, and Guy Boivin, MD, MSc<sup>4</sup> J Pediatr. 2013 Sept;163: 911-13





### <u>AIM</u>:

To assess factors associated with false-negative RSV RADT in a prospective cohort of 720 children admitted for ARI, of which 463 (64%) were RSV+ by RT-PCR/DNA hybridization assay

| RT-PCR/DNA hybridization assay |                      |                      |                  |                      |
|--------------------------------|----------------------|----------------------|------------------|----------------------|
|                                | True positive* n (%) | False negative n (%) | RR (95% CI)      | P value <sup>†</sup> |
| Age (mo)                       |                      |                      |                  |                      |
| 0-5                            | 227 (83.8)           | 44 (16.2)            | Ref.             | n/a                  |
| 6-11                           | 61 (79.2)            | 16 (20.8)            | 1.28 (0.77-2.14) | .392                 |
| 12-17                          | 39 (78.0)            | 11 (22.0)            | 1.36 (0.75-2.43) | .312                 |
| 18-23                          | 22 (73.3)            | 8 (26.7)             | 1.64 (0.86-3.15) | .199                 |
| 24-35                          | 21 (60.0)            | 14 (40.0)            | 2.46 (1.52-4.01) | .002                 |
| Sex                            |                      |                      |                  |                      |
| Female                         | 156 (79.2)           | 41 (20.8)            | Ref.             | n/a                  |
| Male                           | 214 (80.5)           | 52 (19.5)            | 0.94 (0.65-1.35) | .815                 |
| Symptom duration (d)           |                      |                      |                  |                      |
| <5                             | 285 (82.8)           | 59 (17.2)            | Ref.             | n/a                  |
| ≥5 d                           | 85 (72.0)            | 33 (28.0)            | 1.63 (1.12-2.36) | .016                 |
| Fever ≥38.5°C                  |                      |                      |                  |                      |
| No                             | 136 (81.0)           | 32 (19.0)            | Ref.             | n/a                  |
| Yes                            | 234 (79.3)           | 61 (20.7)            | 1.09 (0.74-1.59) | .739                 |
| Pneumonia <sup>‡</sup>         |                      |                      |                  |                      |
| No                             | 253 (84.1)           | 48 (15.9)            | Ref.             | n/a                  |
| Yes                            | 117 (72.2)           | 45 (27.8)            | 1.74 (1.22-2.49) | .003                 |
| Oxygen therapy                 |                      |                      |                  |                      |
| No                             | 73 (73.7)            | 26 (26.3)            | Ref.             | n/a                  |
| Yes                            | 297 (81.6)           | 67 (18.4)            | 0.70 (0.47-1.04) | .091                 |
| PICU admission                 |                      |                      |                  |                      |
| No                             | 350 (79.7)           | 89 (20.3)            | Ref.             | n/a                  |
| Yes                            | 20 (83.3)            | 4 (16.7)             | 0.82 (0.33-2.40) | .798                 |
| Genotype <sup>§</sup>          |                      |                      |                  |                      |
| RSV-A                          | 212 (84.5)           | 39 (15.5)            | Ref.             | n/a                  |
| RSV-B                          | 153 (74.3)           | 53 (25.7)            | 1.66 (1.14-2.40) | .010                 |

 Table I. Risk of a false-negative RADT result among 463 hospitalized children <3 years old with RSV RTI confirmed by RT-PCR/DNA hybridization assay</th>

Papenburg et al. J Pediatr. 2013

### Significance of false-negative RSV RADTs

### <u>Clinical</u>:

 Consider re-testing a negative sample by a more sensitive method (e.g., PCR)

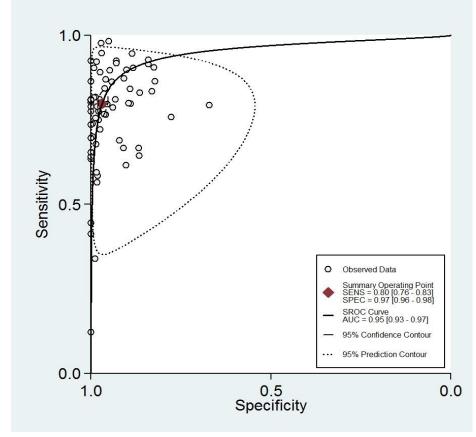
### Public health:

- Sensitivity of RADTs must be taken into account when estimating RSV hospitalization rates based on lab surveillance data
- Failure to do so: underestimate the burden of RSV especially among older children

Table II.Multivariable logistic regression model for theoutcome of a false-negative RADT result among 463hospitalized children <3 years old with RSV RTI</td>confirmed by RT-PCR/DNA hybridization assay

| Variable <sup>†</sup>       | a0R (95% CI)     |
|-----------------------------|------------------|
| Age 0-5 mo                  | Ref.             |
| Age 6-11 mo                 | 1.06 (0.54-2.10) |
| Age 12-17 mo                | 1.43 (0.67-3.11) |
| Age 18-23 mo                | 1.71 (0.67-4.34) |
| Age 24-35 mo                | 3.04 (1.33-6.95) |
| Symptom duration $\geq 5$ d | 2.12 (1.27-3.57) |
| RSV Genotype B              | 1.90 (1.17-3.08) |
| Pneumonia*                  | 1.39 (0.83-2.35) |

J Pediatr. 2013 Sept;163: 911-13


# Systematic review / meta-analysis of RSV RADT diagnostic accuracy

### 71 studies

Pooled estimates (95%Cl)
Sens.: 80% (76%-83%)
Spec.: 97% (96%-98%)
+LR: 25.5 (18.3 - 35.5)
-LR: 0.21 (0.18 - 0.24)

Adults:

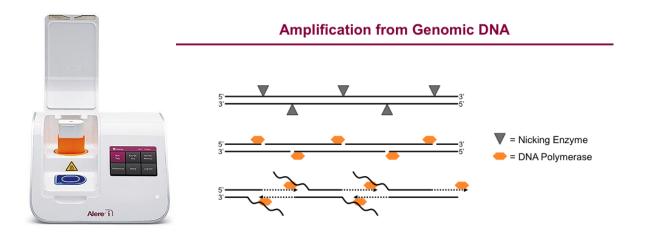
Sensitivity 29% (11% - 48%)



Chartrand et al. J Clin Microbiol 2015

## Novel rapid diagnostics: influenza and RSV

### Digital immunoassays (DIAs) with automated reader


- BD Veritor<sup>™</sup> System Flu A+B or RSV
- (Quidel) Sofia® Influenza A+B or RSV



### Novel rapid diagnostics: influenza and RSV

### Rapid nucleic acid amplification tests (NAATs)

- Alere™ i Influenza A&B or iRSV
- (Roche) Cobas<sup>®</sup> Liat Influenza A/B & RSV assay





### Novel Rapid Diagnostic Tests for Influenza Approved for Use at the Point of Care

#### Digital immunoassays (DIAs) with automated reader

- Veritor System Flu A+B: ~10 minutes
- Sofia Influenza A+B FIA: ~ 10 minutes

#### Rapid nucleic acid amplification tests (NAATs)

- Alere i Influenza A&B: ~13 minutes
- cobas Liat Influenza A/B and RSV assay: <20 minutes</li>
- Xpert Xpress Flu/RSV: 20-30 minutes
- FilmArray Respiratory Panel EZ (14 pathogens): ~ 1hour

### New US FDA minimum performance standards for rapid tests (2018)

Sensitivity ≥ 80% with 95% CI lower bound of 70% against RT-PCR reference standard

FDA Fact Sheet. CLIA-Waived Rapid Flu Test Facts. https://www.fda.gov/downloads/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/UCM596063.pdf

#### PACP

# **Annals of Internal Medicine**<sup>®</sup>

LATEST ISSUES CHANNELS CME/MOC IN THE CLINIC JOURNAL CLUB WEB EXCLUSIVES

REVIEWS | 19 SEPTEMBER 2017

### Diagnostic Accuracy of Novel and Traditional Rapid Tests for Influenza Infection Compared With Reverse Transcriptase Polymerase Chain Reaction: A Systematic Review and Meta-analysis

AUTHOR INFO

Joanna Merckx, MD, MSc; Rehab Wali, BSc, MBBS; Ian Schiller, MSc; Chelsea Caya, MScPH; Genevieve C. Gore, MLIS; Caroline Chartrand, MD, MSc; Nandini Dendukuri, PhD; Jesse Papenburg, MD, MSc

Merckx J, et al. Ann Intern Med. 2017;167(6):394-409.

### Rapid Test Diagnostic Accuracy: Primary Results

|                           | Influenza A              | Influenza B              |  |
|---------------------------|--------------------------|--------------------------|--|
|                           | Sensitivity, % (95% Crl) | Sensitivity, % (95% Crl) |  |
| OVERALL                   |                          |                          |  |
| Traditional RIDTs         | 54.4 (48.9-59.8)         | 53.2 (41.7-64.4)         |  |
| DIAs                      | 80.0 (73.4-85.6)         | 76.8 (65.4-85.4)         |  |
| NAATs                     | 91.6 (84.9-95.9)         | 95.4 (87.3-98.7)         |  |
| Difference in sensitiviti | es, overall              |                          |  |
| DIAs vs. Trad. RIDTs      | 25.5 (17.0 - 33.4)       | 23.5 (7.7 – 37.9)        |  |
| NAATs vs. Trad. RIDTs     | 37.1 (28.6 – 44.2)       | 41.7 (28.5 – 54.0)       |  |
| NAATs vs. DIAs            | 11.5 (2.9 – 19.5)        | 18.2 (6.9 – 30.6)        |  |

#### All specificities ≥98.3

RIDTs = rapid influenza diagnostic tests, DIAs = digital immunoassays, NAATs = nucleic acid amplification tests, CrI = credible interval

Merckx J, et al. Ann Intern Med. 2017;167(6):394-409.

## **Subgroup Analysis: Patient Age**

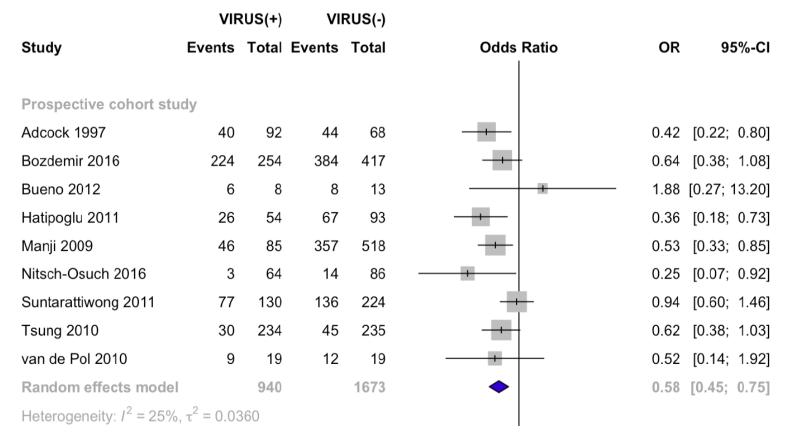
|                     | Influenza A                       | Influenza B              |
|---------------------|-----------------------------------|--------------------------|
| Traditional RIDTs   | Sensitivity, % (95% Crl)          | Sensitivity, % (95% Crl) |
| Children            | 61.2 (55.0-67.2)                  | 65.7 (45.3-80.5)         |
| Adults              | 42.6 (34.8-50.9)                  | 33.2 (19.9–50.7)         |
| Difference in RIDT  | sensitivity: Children vs. Adu     | ults                     |
|                     | 18.5 (8.4–28.3)                   | 31.8 (6.1-52.6)          |
| DIAs                |                                   |                          |
| Children            | 87.6 (81.8-92.2)                  | 82.5 (71.2-90.2)         |
| Adults              | 75.4 (66.6-82.6) 57.0 (39.5-71.6) |                          |
| Difference in DIA s | ensitivity: Children vs. Adul     | ts                       |
|                     | 12.1 (3.1-22.1)                   | 25.3 (6.9-44.7)          |
| NAATs               |                                   |                          |
| Children            | 90.2 (79.2-95.8)                  | 95.9 (82.9-99.2)         |
| Adults              | 87.4 (71.1-95.6)                  | 75.7 (51.8-90.7)         |
| Difference in NAAT  | sensitivity: Children vs. Ad      | ults                     |
|                     | 2.7 (-10.7-19.7)                  | 19.5 (1.0-43.7)          |

Merckx J, et al. Ann Intern Med. 2017;167(6):394-409.

### **Subgroup Analysis: Commercial Brand**

|                                   | Influenza A                  | Influenza B              |
|-----------------------------------|------------------------------|--------------------------|
|                                   | Sensitivity, % (95% Crl)     | Sensitivity, % (95% Crl) |
| DIAs                              |                              |                          |
| Sofia Influenza A+B<br>FIA (n=12) | 77.8 (68.8-85.4)             | 73.5 (55.8–86.1)         |
| Veritor FluA+B<br>(n=6)           | 83.0 (73.4-90.1)             | 80.0 (68.8-88.2)         |
| Difference in DIA sensiti         | vity: BD Veritor vs. Sofia   |                          |
|                                   | 5.1 (-6.9-16.4)              | 6.4 (-10.4-25.8)         |
| NAATs                             |                              |                          |
| Alere i Influenza<br>A&B (n=7)    | 84.4 (75.3-90.9)             | 86.6 (69.0-95.3)         |
| Cobas Liat Influenza<br>A/B (n=5) | 97.1 (92.9-98.9)             | 98.7 (95.6–99.7)         |
| Difference in NAAT sens           | itivity: Cobas Liat vs. Aler | re i                     |
|                                   | 12.4 (4.9–21.9)              | 11.8 (2.8–29.5)          |

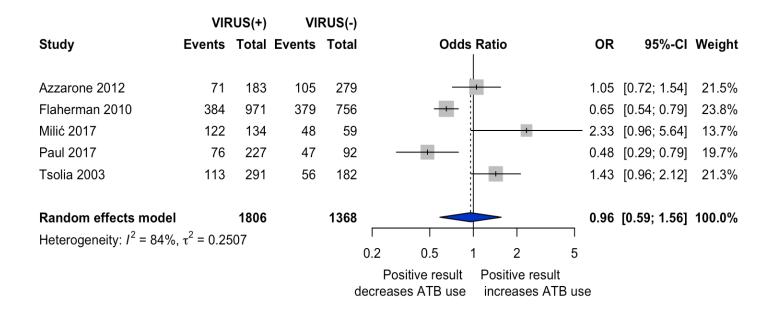
### Editorial


### Contemporary Influenza Diagnostics: Renewed Focus on Testing Patients

- "a clear need to improve appropriate early access to antiviral therapy and to reduce inappropriate antibacterial use in patients with influenza"
- "The data provided in Merckx and colleagues' review should prompt revision of guidelines to encourage use of these newer diagnostic strategies. Although studies are needed to confirm the utility of these assays in the point-of-care setting and to optimize their implementation and use, the strength of the data suggests that now is the time to utilize these newer tests to help clinicians make better antimicrobial choices for patients with influenza infection."

# CLINICAL IMPACT OF DIAGNOSTIC TESTING

### The Clinical Utility of Respiratory Viral Testing in Hospitalized Children: a Meta-Analysis


**Figure 4.** Subgroup analysis by study design. Forest plot of the pooled OR comparing the proportion of patients receiving antibiotics among those with a positive *vs.* negative RV test result. Test for subgroup differences: p = 0.02.



Noel et al, Hosp Pediatrics 2019

### The Clinical Utility of Respiratory Viral Testing in Hospitalized Children: a Meta-Analysis

#### Pooled OR of studies with 100% bronchiolitis patients



Noel et al, Hosp Pediatrics 2019

### Multiplex Respiratory Virus Testing for Antimicrobial Stewardship: A Prospective Assessment of Antimicrobial Use and Clinical Outcomes Among Hospitalized Adults

Makeda Semret,<sup>1</sup> Ian Schiller,<sup>2</sup> Barbara Ann Jardin,<sup>2</sup> Charles Frenette,<sup>1</sup> Vivian G. Loo,<sup>1</sup> Jesse Papenburg,<sup>1</sup> Shelly A. McNeil,<sup>4</sup> and Nandini Dendukuri<sup>3</sup>

<sup>1</sup>Division of Infectious diseases and Medical Microbiology, Department of Medicine and Laboratories, <sup>2</sup>Research Institute, and <sup>3</sup>Technology Assessment Unit, McGill University Health Centre, Montreal, Québec, and <sup>4</sup>Canadian Center for Vaccinology, IWK Health Centre and Nova Scotia Health Authority, Dalhousie University, Halifax, Canada

- Secondary analysis of prospective cohort of 800 adults admitted with suspected respiratory infection at MUHC
- Antibiotic management was significantly associated with radiographic pneumonia, not results of multiplex RV test
- ~ 8-fold increase in appropriateness of antiviral treatment based on influenza results

The Journal of Infectious Diseases

#### EDITORIAL COMMENTARY



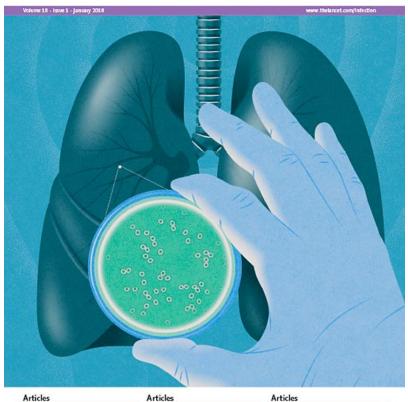
### Viral Diagnostics: Only Half the Battle

Angela R. Branche<sup>1</sup> and Ann R. Falsey<sup>1,2,3</sup>

<sup>1</sup>Department of Medicine, University of Rochester; <sup>2</sup>Rochester General Hospital; and <sup>3</sup>University of Rochester School of Medicine, New York

(See the major article by Semret et al, on pages 936-44.)

- What's missing?
  - Use of rapid tests?
  - Biomarkers to reduce uncertainty regarding bacterial co-infection?
  - Antimicrobial stewardship programs?
  - Choosing (wisely) your patient population, setting and clinical syndrome?
  - Reducing unnecessary chest radiography?


Branche and Falsey. J Infect Dis 2017

### FULL TEXT ARTICLE Procalcitonin and antibiotic use: imperfect, yet effective

#### Patricia S Fontela and Jesse Papenburg

Lancet Infectious Diseases, The, 2018-01-01, Volume 18, Issue 1, Pages 11-13, Copyright © 2018 Elsevier Ltd

#### THE LANCET Infectious Diseases



| Articles                         |
|----------------------------------|
| Outbreak of antibiotic-resistant |

See page 37

hypervirulent Klebsiella in China

Performance of Xpert Ultrato diagnose tuberculosis Seepages 68 and 76

Procaki tonin-guided antibiotic therapy In respiratory infections See page 95

# Summary

- Modern respiratory virus testing is simpler, faster, more accurate and more multiplexed
- To leverage these technological advances and improve patient outcomes, we need to "choose wisely"
- Evidence shows challenges for real-world implementation

